Severe traumatic brain injury

Intraoperative intracranial pressure and cerebral perfusion pressure for predicting surgical outcome in severe traumatic brain injury

Authors: Tsai TH, Huang TY, Kung SS, Su YF, Hwang SL, Lieu AS.

Intraoperative intracranial pressure (ICP) and cerebral perfusion pressure (CPP) were evaluated for use as prognostic indicators after surgery for severe traumatic brain injury (TBI), and threshold ICP and CPP values were determined to provide guidelines for patient management. This retrospective study reviewed data for 66 patients (20 females and 46 males) aged 13-83 years (average age, 48 years) who had received decompressive craniectomy and hematoma evacuation for severe TBI. The analysis of clinical characteristics included Glascow Coma Scale score, trauma mechanism, trauma severity, cerebral hemorrhage type, hematoma thickness observed on computed tomography scan, Glasgow Outcome Scale score, and mortality. Patients whose treatment included ICP monitoring had significantly better prognosis (p < 0.001) and significantly lower mortality (p = 0.016) compared to those who did not receive ICP monitoring. At all three major steps of the procedure, i.e., creation of the burr hole, evacuation of the hematoma, and closing of the wound, intraoperative ICP and CPP values significantly differed. The ICP and CPP values were also significantly associated with surgical outcome in the severe TBI patients. Between hematoma evacuation and wound closure, ICP and CPP values differed by 6.8 ± 4.5 and 6.5 ± 4.6 mmHg, respectively (mean difference, 6 mmHg). Intraoperative thresholds were 14 mmHg for ICP and 56mmH for CPP. Monitoring ICP and CPP during surgery improves management of severe TBI patients and provides an early prognostic indicator. During surgery for severe TBI, early detection of increased ICP is also crucial for enabling sufficiently early treatment to improve surgical outcome. However, further study is needed to determine the optimal intraoperative ICP and CPP thresholds before their use as subjective guidelines for managing severe TBI patients.

Intermittent Versus Continuous Cerebrospinal Fluid Drainage Management in Adult Severe Traumatic Brain Injury: Assessment of Intracranial Pressure Burden

Authors: Nwachuku EL, Puccio AM, Fetzick A, Scruggs B, Chang YF, Shutter LA, Okonkwo DO.

INTRODUCTION: There is clinical equipoise regarding whether neurointensive care unit management of external ventricular drains (EVD) in severe traumatic brain injury (TBI) should involve an open EVD, with continuous drainage of cerebrospinal fluid (CSF), versus a closed EVD, with intermittent opening as necessary to drain CSF. In a matched cohort design, we assessed the relative impact of continuous versus intermittent CSF drainage on intracranial pressure in the management of adult severe TBI.
METHODS: Sixty-two severe TBI patients were assessed. Thirty-one patients managed by open EVD drainage were matched by age, sex, and injury severity (initial Glasgow Coma Scale (GCS) score) to 31 patients treated with a closed EVD drainage. Patients in the open EVD group also had a parenchymal intracranial pressure (ICP) monitor placed through an adjacent burr hole, allowing real-time recording of ICP. Hourly ICP and other pertinent data, such as length of stay in intensive care unit (LOS-ICU), Injury Severity Score, and survival status, were extracted from our prospective database.
RESULTS: With age, injury severity (initial GCS score), and neurosurgical intervention adjusted for, there was a statistically significant difference of 5.66 mmHg in mean ICP (p < 0.0001) between the open and the closed EVD groups, with the closed EVD group exhibiting greater mean ICP. ICP burden (ICP ≥ 20 mmHg) was shown to be significantly higher in the intermittent EVD group (p = 0.0002) in comparison with the continuous EVD group.
CONCLUSION: Continuous CSF drainage via an open EVD seemed to be associated with more effective ICP control in the management of adult severe TBI.

National Variability in Intracranial Pressure Monitoring and Craniotomy for Children with Moderate to Severe Traumatic Brain Injury

Authors: Van Cleve W, Kernic MA, Ellenbogen RG, Wang J, Zatzick DF, Bell MJ, Wainwright MS, Groner JI, Mink RB, Giza CC, Boyle LN, Mitchell PH, Rivara FP, Vavilala MS; for the PEGASUS (Pediatric Guideline Adherence and Outcomes) Project.

BACKGROUND: Traumatic brain injury (TBI) is a significant cause of mortality and disability in children. Intracranial pressure monitoring (ICPM) and craniotomy/craniectomy (CRANI) may affect outcomes. Sources of variability in the use of these interventions remain incompletely understood.

OBJECTIVE: To analyze sources of variability in the use of ICPM and CRANI.

METHODS: Retrospective cross-sectional study of patients with moderate/severe pediatric TBI using data submitted to the American College of Surgeons National Trauma Databank.

RESULTS: We analyzed data from 7,140 children at 156 US hospitals during 7 continuous years. 27.4% of children had ICPM, while 11.7% had a CRANI. Infants had lower rates of ICPM and CRANI than older children. A lower rate of ICPM was observed among children hospitalized at combined pediatric/adult trauma centers than children treated at adult-only trauma centers (RR 0.80, 95% CI 0.66 - 0.97). For ICPM and CRANI, 18.5% and 11.6%, respectively, of residual model variance was explained by between-hospital variation in care delivery, but almost no correlation was observed between within-hospital tendency towards performing these procedures.

CONCLUSION: Infants received less ICPM than older children, and children hospitalized at pediatric trauma centers received less ICPM than children at adult-only trauma centers. In addition, significant between-hospital variability existed in the delivery of ICPM and CRANI to children with moderate-severe TBI.

Intracranial Pressure Monitoring in Severe Traumatic Brain Injury: Results from the American College of Surgeons Trauma Quality Improvement Program

Authors: Alali AS, Fowler RA, Mainprize TG, Scales DC, Kiss A, de Mestral C, Ray JG, Nathens AB.

While existing guidelines support the utilization of intracranial pressure (ICP) monitoring in patients with traumatic brain injury (TBI), the evidence suggesting benefit is limited. To evaluate the impact on outcome, we determined the relationship between ICP monitoring and mortality in centers participating in the American College of Surgeons Trauma Quality Improvement Program (TQIP). Data on 10,628 adults with severe TBI were derived from 155 TQIP centers over 2009-2011. Random-intercept multilevel modeling was used to evaluate the association between ICP monitoring and mortality after adjusting for important confounders. We evaluated this relationship at the patient-level and at the institutional-level. Overall mortality (n=3,769) was 35%. Only 1,874 (17.6%) patients underwent ICP monitoring, with a mortality of 32%. The adjusted odds ratio (OR) for mortality was 0.44 (95% CI: 0.31-0.63) comparing patients with ICP monitoring to those without. It is plausible that patients receiving ICP monitoring were selected because of an anticipated favorable outcome. To overcome this limitation, we stratified hospitals into quartiles based on ICP monitoring utilization. Hospitals with higher rates of ICP monitoring use were associated with lower mortality: the adjusted OR of death was 0.52 (95% CI: 0.35-0.78) in the quartile of hospitals with highest use compared to the lowest. ICP monitoring utilization rates explained only 9.9% of variation in mortality across centers. Results were comparable irrespective of the method of case-mix adjustment. In this observational study, ICP monitoring utilization was associated with lower mortality. However, variability in ICP monitoring rates contributed only modestly to variability in institutional mortality rates. Identifying other institutional practices that impact on mortality is an important area for future research.

A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury

Authors: Rockswold SB, Rockswold GL, Zaun DA, Liu J.

Object: Preclinical and clinical investigations indicate that the positive effect of hyperbaric oxygen (HBO2) for severe traumatic brain injury (TBI) occurs after rather than during treatment. The brain appears better able to use baseline O2 levels following HBO2 treatments. In this study, the authors evaluate the combination of HBO2 and normobaric hyperoxia (NBH) as a single treatment.

Methods: Forty-two patients who sustained severe TBI (mean Glasgow Coma Scale score 5.7) were prospectively randomized within 24 hours of injury to either: 1) combined HBO2/NBH (60 minutes of HBO2 at 1.5 atmospheres absolute followed by NBH, 3 hours of 100% fraction of inspired oxygen at 1.0 ATA) or 2) control, standard care. Treatments occurred once every 24 hours for 3 consecutive days. Intracranial pressure, surrogate markers for cerebral metabolism, and O2 toxicity were monitored. Clinical outcome was assessed at 6 months using the sliding dichotomized Glasgow Outcome Scale (GOS) score. Mixed-effects linear modeling was used to statistically test differences between the treatment and control groups. Functional outcome and mortality rates were compared using chi-square tests. 

Timing of Intracranial Hypertension Following Severe Traumatic Brain Injury

Authors: Stein DM, Brenner M, Hu PF, Yang S, Hall EC, Stansbury LG, Menaker J, Scalea TM.

BACKGROUND: We asked whether continuous intracranial pressure (ICP) monitoring data could provide objective measures of the degree and timing of intracranial hypertension (ICH) in the first week of neurotrauma critical care and whether such data could be linked to outcome.
METHODS: We enrolled adult (>17 years old) patients admitted to our Level I trauma center within 6 h of severe TBI. ICP data were automatically captured and ICP 5-minute means were grouped into 12-hour time periods from admission (hour 0) to >7 days (hour 180). Means, maximum, percent time (% time), and pressure-times-time dose (PTD, mmHg h) of ICP >20 mmHg and >30 mmHg were calculated for each time period.
RESULTS: From 2008 to 2010, we enrolled 191 patients. Only 2.1 % had no episodes of ICH. The timing of maximum PTD20 was relatively equally distributed across the 15 time periods. Median ICP, PTD20, %time20, and %time30 were all significantly higher in the 84-180 h time period than the 0-84 h time period. Stratified by functional outcome, those with poor functional outcome had significantly more ICH in hours 84-180. Multivariate analysis revealed that, after 84 h of monitoring, every 5 % increase in PTD20 was independently associated with 21 % higher odds of having a poor functional outcome (adjusted odds ratio = 1.21, 95 % CI 1.02-1.42, p = 0.03).
CONCLUSIONS: Although early elevations in ICP occur, ICPs are the highest later in the hospital course than previously understood, and temporal patterns of ICP elevation are associated with functional outcome. Understanding this temporal nature of secondary insults has significant implications for management.


Subscribe to RSS - Severe traumatic brain injury